

Modelling forest soil organic carbon dynamics with Biome-BGCMuSo model

INTRODUCTION

Soil organic carbon (SOC) is the largest terrestrial C pool and a mandatory C pool in GHG inventory. Due to ongoing impacts of climate change, alterations in SOC are expected, hence monitoring of this C pool is relevant. To be able to accurately predict SOC, model results need to be verified with field data.

Is **Biome-BGCMuSo** model applicable for estimating C stock changes in the forest SOC₃₀?

SOC MODELLING

Measured vs. modelled SOC₃₀ changes

Short-term
(2012 – 2022)

Long-term
(the rotation period for
Q. robur stand in Croatia)

BIOME-BGCMuSo MODEL

(Hidy *et al.* 2012, 2016, 2022)

Terrestrial biogeochemical model that simulates C, N and H₂O fluxes in ecosystems.

• RBBGCMuso (Hollós *et al.* 2023)

Calibrated with data on C stocks and C fluxes (v6.2):
forest (oak, *Quercus robur*) – HR (Bitunjac 2024)

METHODS

Validation dataset

OAK CHRONOSEQUENCE EXPERIMENT

Six stands aged from 6 to 139 years

(Fig. 1, 2, Ostrogović Sever *et al.* 2019)

▪ **Repeated SOC₃₀** (2012, 2017, 2022)

Figure 2. Chronosequence stands (ID, in black) and different ages (in blue and in parenthesis).

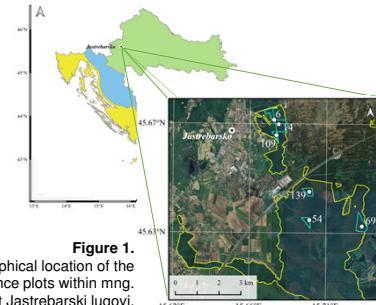


Figure 1.
Geographical location of the
chronosequence plots within mgm.
unit Jastrebarski lugovi.

RESULTS

Period 2012 – 2022

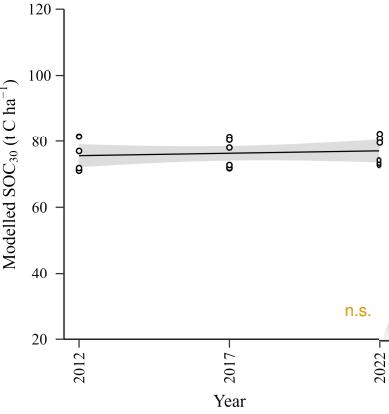
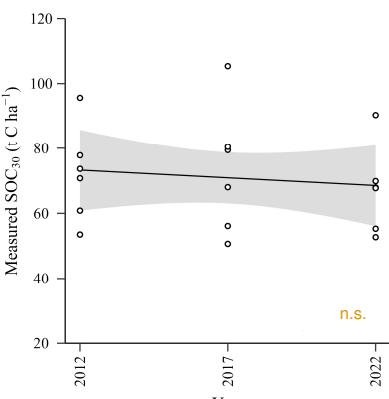



Figure 3. Measured and modelled soil organic carbon in the mineral soil layer down to 30 cm depth (SOC₃₀) in the pedunculate oak forest (including six chronosequence stands, white filled circles) during a ten-year period with grey shading denoting 95% confidence intervals.

Long-term

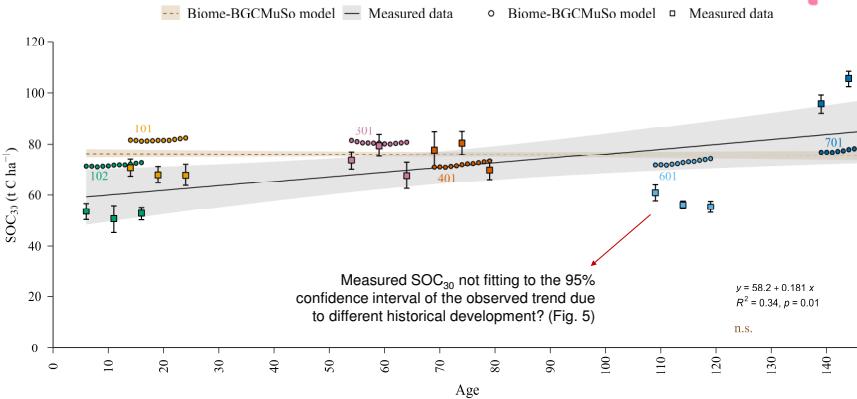


Figure 4. Comparison of the measured (squares, mean ± se; solid trendline with grey shading denoting 95% confidence intervals) and modelled (circles; dashed trendline with light-yellow shading denoting 95% confidence intervals) SOC₃₀ for different stands in the chronosequence experiment (102, 101, 301, 401, 601, 701) and at different stand ages. Data points represent the year of the measurement for each stand; measured data years are 2012, 2017, and 2022, from left to right, and for modelled data, measured years range from 2012 to 2022, from left to right.

Only in repeated
chronosequence
approach age trend in
measured SOC₃₀ is
observed!

The lack of statistically
significant trend in the
measured SOC₃₀
restricts statistical
inference regarding the
modelled SOC₃₀.

Longer time series
and higher
sampling density is
required!

Figure 5. The approximate location of the stand 601 (in yellow rectangle) in the period 1783–1784 (non-forest land, Molnár *et al.* 2014) (left panel), period 1865–1869 (forest land, Timár *et al.* 2006) (middle panel) and in the year 2024 (forest land, right panel).

Stand △ 102 ◇ 101 ◇ 301 ◇ 401 * 601 + 701

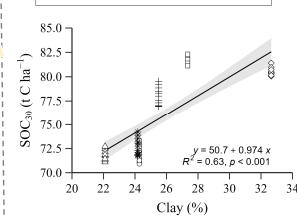


Figure 6. Linear regressions of
pedunculate oak chronosequence
stand-specific clay in the soil on
modelled SOC₃₀, with grey
shading denoting 95% confidence
intervals. Data points in the forest
represent data modelled years
(2012 – 2022) (N = 10).

There are indications that
the soil clay content is a
stronger driver of modelled
SOC₃₀ than the stand age.